Constructions Freudenthal magic square




1 constructions

1.1 tits approach
1.2 vinberg s symmetric method
1.3 triality





constructions

see history context , motivation. these constructed circa 1958 freudenthal , tits, more elegant formulations following in later years.


tits approach

tits approach, discovered circa 1958 , published in (tits 1966), follows.


associated normed real division algebra (i.e., r, c, h or o) there jordan algebra, j3(a), of 3 × 3 a-hermitian matrices. pair (a, b) of such division algebras, 1 can define lie algebra







l
=

(


d
e
r


(
a
)



d
e
r


(

j

3


(
b
)
)
)



(

a

0




j

3


(
b

)

0


)



{\displaystyle l=\left({\mathfrak {der}}(a)\oplus {\mathfrak {der}}(j_{3}(b))\right)\oplus \left(a_{0}\otimes j_{3}(b)_{0}\right)}



where





d
e
r




{\displaystyle {\mathfrak {der}}}

denotes lie algebra of derivations of algebra, , subscript 0 denotes trace-free part. lie algebra l has





d
e
r


(
a
)



d
e
r


(

j

3


(
b
)
)


{\displaystyle {\mathfrak {der}}(a)\oplus {\mathfrak {der}}(j_{3}(b))}

subalgebra, , acts naturally on




a

0




j

3


(
b

)

0




{\displaystyle a_{0}\otimes j_{3}(b)_{0}}

. lie bracket on




a

0




j

3


(
b

)

0




{\displaystyle a_{0}\otimes j_{3}(b)_{0}}

(which not subalgebra) not obvious, tits showed how defined, , produced following table of compact lie algebras.



note construction, row of table a=r gives





d
e
r


(

j

3


(
b
)
)


{\displaystyle {\mathfrak {der}}(j_{3}(b))}

, , vice versa.


vinberg s symmetric method

the magic of freudenthal magic square constructed lie algebra symmetric in , b. not obvious tits construction. ernest vinberg gave construction manifestly symmetric, in (vinberg 1966). instead of using jordan algebra, uses algebra of skew-hermitian trace-free matrices entries in ⊗ b, denoted






s
a



3


(
a

b
)


{\displaystyle {\mathfrak {sa}}_{3}(a\otimes b)}

. vinberg defines lie algebra structure on









d
e
r


(
a
)



d
e
r


(
b
)




s
a



3


(
a

b
)
.


{\displaystyle {\mathfrak {der}}(a)\oplus {\mathfrak {der}}(b)\oplus {\mathfrak {sa}}_{3}(a\otimes b).}



when , b have no derivations (i.e., r or c), lie (commutator) bracket on






s
a



3


(
a

b
)


{\displaystyle {\mathfrak {sa}}_{3}(a\otimes b)}

. in presence of derivations, these form subalgebra acting naturally on






s
a



3


(
a

b
)


{\displaystyle {\mathfrak {sa}}_{3}(a\otimes b)}

in tits construction, , tracefree commutator bracket on






s
a



3


(
a

b
)


{\displaystyle {\mathfrak {sa}}_{3}(a\otimes b)}

modified expression values in





d
e
r


(
a
)



d
e
r


(
b
)


{\displaystyle {\mathfrak {der}}(a)\oplus {\mathfrak {der}}(b)}

.


triality

a more recent construction, due pierre ramond (ramond 1976) , bruce allison (allison 1978) , developed chris barton , anthony sudbery, uses triality in form developed john frank adams; presented in (barton & sudbery 2000), , in streamlined form in (barton & sudbery 2003). whereas vinberg s construction based on automorphism groups of division algebra (or rather lie algebras of derivations), barton , sudbery use group of automorphisms of corresponding triality. triality trilinear map








a

1


×

a

2


×

a

3




r



{\displaystyle a_{1}\times a_{2}\times a_{3}\to \mathbf {r} }



obtained taking 3 copies of division algebra a, , using inner product on dualize multiplication. automorphism group subgroup of so(a1) × so(a2) × so(a3) preserving trilinear map. denoted tri(a). following table compares lie algebra lie algebra of derivations.



barton , sudbery identify magic square lie algebra corresponding (a,b) lie algebra structure on vector space









t
r
i


(
a
)



t
r
i


(
b
)

(

a

1




b

1


)

(

a

2




b

2


)

(

a

3




b

3


)
.


{\displaystyle {\mathfrak {tri}}(a)\oplus {\mathfrak {tri}}(b)\oplus (a_{1}\otimes b_{1})\oplus (a_{2}\otimes b_{2})\oplus (a_{3}\otimes b_{3}).}



the lie bracket compatible z2 × z2 grading, tri(a) , tri(b) in degree (0,0), , 3 copies of ⊗ b in degrees (0,1), (1,0) , (1,1). bracket preserves tri(a) , tri(b) , these act naturally on 3 copies of ⊗ b, in other constructions, brackets between these 3 copies more constrained.


for instance when , b octonions, triality of spin(8), double cover of so(8), , barton-sudbery description yields










e



8






s
o



8








s
o

^




8



(
v




v
^



)

(

s

+







s
^




+


)

(

s









s
^







)


{\displaystyle {\mathfrak {e}}_{8}\cong {\mathfrak {so}}_{8}\oplus {\widehat {\mathfrak {so}}}_{8}\oplus (v\otimes {\widehat {v}})\oplus (s_{+}\otimes {\widehat {s}}_{+})\oplus (s_{-}\otimes {\widehat {s}}_{-})}



where v, s+ , s− 3 8 dimensional representations of






s
o



8




{\displaystyle {\mathfrak {so}}_{8}}

(the fundamental representation , 2 spin representations), , hatted objects isomorphic copy.


with respect 1 of z2 gradings, first 3 summands combine give






s
o



16




{\displaystyle {\mathfrak {so}}_{16}}

, last 2 form 1 of spin representations Δ+ (the superscript denotes dimension). known symmetric decomposition of e8.


the barton-sudbery construction extends other lie algebras in magic square. in particular, exceptional lie algebras in last row (or column), symmetric decompositions are:










f



4






s
o



9




Δ

16




{\displaystyle {\mathfrak {f}}_{4}\cong {\mathfrak {so}}_{9}\oplus \delta ^{16}}









e



6



(



s
o



10






u



1


)


Δ

32




{\displaystyle {\mathfrak {e}}_{6}\cong ({\mathfrak {so}}_{10}\oplus {\mathfrak {u}}_{1})\oplus \delta ^{32}}









e



7



(



s
o



12






s
p



1


)


Δ

+


64




{\displaystyle {\mathfrak {e}}_{7}\cong ({\mathfrak {so}}_{12}\oplus {\mathfrak {sp}}_{1})\oplus \delta _{+}^{64}}









e



8






s
o



16




Δ

+


128


.


{\displaystyle {\mathfrak {e}}_{8}\cong {\mathfrak {so}}_{16}\oplus \delta _{+}^{128}.}






^ cite error: named reference baez200243 invoked never defined (see page).






Comments

Popular posts from this blog

Ice Age List of Ice Age characters

Beiyang clique in power .281911.E2.80.9315.29 Beiyang Army

R172 .282011.E2.80.93Present.29 Mercedes-Benz SLK-Class