Constructions Freudenthal magic square
1 constructions
1.1 tits approach
1.2 vinberg s symmetric method
1.3 triality
constructions
see history context , motivation. these constructed circa 1958 freudenthal , tits, more elegant formulations following in later years.
tits approach
tits approach, discovered circa 1958 , published in (tits 1966), follows.
associated normed real division algebra (i.e., r, c, h or o) there jordan algebra, j3(a), of 3 × 3 a-hermitian matrices. pair (a, b) of such division algebras, 1 can define lie algebra
l
=
(
d
e
r
(
a
)
⊕
d
e
r
(
j
3
(
b
)
)
)
⊕
(
a
0
⊗
j
3
(
b
)
0
)
{\displaystyle l=\left({\mathfrak {der}}(a)\oplus {\mathfrak {der}}(j_{3}(b))\right)\oplus \left(a_{0}\otimes j_{3}(b)_{0}\right)}
where
d
e
r
{\displaystyle {\mathfrak {der}}}
denotes lie algebra of derivations of algebra, , subscript 0 denotes trace-free part. lie algebra l has
d
e
r
(
a
)
⊕
d
e
r
(
j
3
(
b
)
)
{\displaystyle {\mathfrak {der}}(a)\oplus {\mathfrak {der}}(j_{3}(b))}
subalgebra, , acts naturally on
a
0
⊗
j
3
(
b
)
0
{\displaystyle a_{0}\otimes j_{3}(b)_{0}}
. lie bracket on
a
0
⊗
j
3
(
b
)
0
{\displaystyle a_{0}\otimes j_{3}(b)_{0}}
(which not subalgebra) not obvious, tits showed how defined, , produced following table of compact lie algebras.
note construction, row of table a=r gives
d
e
r
(
j
3
(
b
)
)
{\displaystyle {\mathfrak {der}}(j_{3}(b))}
, , vice versa.
vinberg s symmetric method
the magic of freudenthal magic square constructed lie algebra symmetric in , b. not obvious tits construction. ernest vinberg gave construction manifestly symmetric, in (vinberg 1966). instead of using jordan algebra, uses algebra of skew-hermitian trace-free matrices entries in ⊗ b, denoted
s
a
3
(
a
⊗
b
)
{\displaystyle {\mathfrak {sa}}_{3}(a\otimes b)}
. vinberg defines lie algebra structure on
d
e
r
(
a
)
⊕
d
e
r
(
b
)
⊕
s
a
3
(
a
⊗
b
)
.
{\displaystyle {\mathfrak {der}}(a)\oplus {\mathfrak {der}}(b)\oplus {\mathfrak {sa}}_{3}(a\otimes b).}
when , b have no derivations (i.e., r or c), lie (commutator) bracket on
s
a
3
(
a
⊗
b
)
{\displaystyle {\mathfrak {sa}}_{3}(a\otimes b)}
. in presence of derivations, these form subalgebra acting naturally on
s
a
3
(
a
⊗
b
)
{\displaystyle {\mathfrak {sa}}_{3}(a\otimes b)}
in tits construction, , tracefree commutator bracket on
s
a
3
(
a
⊗
b
)
{\displaystyle {\mathfrak {sa}}_{3}(a\otimes b)}
modified expression values in
d
e
r
(
a
)
⊕
d
e
r
(
b
)
{\displaystyle {\mathfrak {der}}(a)\oplus {\mathfrak {der}}(b)}
.
triality
a more recent construction, due pierre ramond (ramond 1976) , bruce allison (allison 1978) , developed chris barton , anthony sudbery, uses triality in form developed john frank adams; presented in (barton & sudbery 2000), , in streamlined form in (barton & sudbery 2003). whereas vinberg s construction based on automorphism groups of division algebra (or rather lie algebras of derivations), barton , sudbery use group of automorphisms of corresponding triality. triality trilinear map
a
1
×
a
2
×
a
3
→
r
{\displaystyle a_{1}\times a_{2}\times a_{3}\to \mathbf {r} }
obtained taking 3 copies of division algebra a, , using inner product on dualize multiplication. automorphism group subgroup of so(a1) × so(a2) × so(a3) preserving trilinear map. denoted tri(a). following table compares lie algebra lie algebra of derivations.
barton , sudbery identify magic square lie algebra corresponding (a,b) lie algebra structure on vector space
t
r
i
(
a
)
⊕
t
r
i
(
b
)
⊕
(
a
1
⊗
b
1
)
⊕
(
a
2
⊗
b
2
)
⊕
(
a
3
⊗
b
3
)
.
{\displaystyle {\mathfrak {tri}}(a)\oplus {\mathfrak {tri}}(b)\oplus (a_{1}\otimes b_{1})\oplus (a_{2}\otimes b_{2})\oplus (a_{3}\otimes b_{3}).}
the lie bracket compatible z2 × z2 grading, tri(a) , tri(b) in degree (0,0), , 3 copies of ⊗ b in degrees (0,1), (1,0) , (1,1). bracket preserves tri(a) , tri(b) , these act naturally on 3 copies of ⊗ b, in other constructions, brackets between these 3 copies more constrained.
for instance when , b octonions, triality of spin(8), double cover of so(8), , barton-sudbery description yields
e
8
≅
s
o
8
⊕
s
o
^
8
⊕
(
v
⊗
v
^
)
⊕
(
s
+
⊗
s
^
+
)
⊕
(
s
−
⊗
s
^
−
)
{\displaystyle {\mathfrak {e}}_{8}\cong {\mathfrak {so}}_{8}\oplus {\widehat {\mathfrak {so}}}_{8}\oplus (v\otimes {\widehat {v}})\oplus (s_{+}\otimes {\widehat {s}}_{+})\oplus (s_{-}\otimes {\widehat {s}}_{-})}
where v, s+ , s− 3 8 dimensional representations of
s
o
8
{\displaystyle {\mathfrak {so}}_{8}}
(the fundamental representation , 2 spin representations), , hatted objects isomorphic copy.
with respect 1 of z2 gradings, first 3 summands combine give
s
o
16
{\displaystyle {\mathfrak {so}}_{16}}
, last 2 form 1 of spin representations Δ+ (the superscript denotes dimension). known symmetric decomposition of e8.
the barton-sudbery construction extends other lie algebras in magic square. in particular, exceptional lie algebras in last row (or column), symmetric decompositions are:
f
4
≅
s
o
9
⊕
Δ
16
{\displaystyle {\mathfrak {f}}_{4}\cong {\mathfrak {so}}_{9}\oplus \delta ^{16}}
e
6
≅
(
s
o
10
⊕
u
1
)
⊕
Δ
32
{\displaystyle {\mathfrak {e}}_{6}\cong ({\mathfrak {so}}_{10}\oplus {\mathfrak {u}}_{1})\oplus \delta ^{32}}
e
7
≅
(
s
o
12
⊕
s
p
1
)
⊕
Δ
+
64
{\displaystyle {\mathfrak {e}}_{7}\cong ({\mathfrak {so}}_{12}\oplus {\mathfrak {sp}}_{1})\oplus \delta _{+}^{64}}
e
8
≅
s
o
16
⊕
Δ
+
128
.
{\displaystyle {\mathfrak {e}}_{8}\cong {\mathfrak {so}}_{16}\oplus \delta _{+}^{128}.}
^ cite error: named reference baez200243 invoked never defined (see page).
Comments
Post a Comment